Contents lists available at SciVerse ScienceDirect

Journal of Magnetic Resonance

journal homepage: www.elsevier.com/locate/jmr

Studies of ⁶Li-NMR properties in different salt solutions in low magnetic fields

A. Gordji-Nejad^{a,*}, J. Colell^b, S. Glöggler^{b,c}, B. Blümich^b, S. Appelt^{a,b}

^a Central Institute for Electronics, Research Center Jülich, D-52425 Jülich, Germany

^b Institute for Technical Chemistry and Macromolecular Chemistry, RWTH Aachen University, D-52056 Aachen, Germany

^c II. Institute of Physics, RWTH Aachen University, D-52074 Aachen, Germany

ARTICLE INFO

Article history: Received 9 August 2011 Revised 16 September 2011 Available online 7 October 2011

Keywords: Low-field Lithium-6 Relaxation

ABSTRACT

In this article we report the longitudinal relaxation times (T_1) of various ⁶Li salts (⁶Lil, ⁶LiCl and ⁶LiNO₃) in D₂O and H₂O, measured in low magnetic fields ($B_0 = 3.5$ mT). This investigation serves the purpose of clarifying the relaxation behavior of different ⁶Li solutions and different concentrations. The measurement were undertaken to establish a framework for future applications of hyperpolarized ⁶Li in medical imaging, biological studies and investigations of lithium ion batteries. Time will pass during the transport of hyperpolarized lithium ions to the sample, which leads to a polarization loss. In order to store polarization as long as possible, it is necessary to examine which ⁶Li salt solution has the longest relaxation time T_1 . Longitudinal relaxation times of ⁶Li salts in D₂O and H₂O were investigated as a function of concentration and the most extended T_1 was found for ⁶Li in D₂O and H₂O. In agreement with the theory the relaxation time T_1 of all ⁶Li salts increase with decreasing concentration. In the case of ⁶LiI in H₂O an inverse behavior was observed. We assume that the prolonged T_1 times occur due to formation of ⁶LiOH upon the solution of ⁶LiI in H₂O, which settles as a precipitate. By diluting the solution, the precipitate continuously dissolves and approaches T_1 of ⁶LiOH ($T_1 \sim 28$ s), leading to a shorter T_1 relaxation time.

1. Introduction

Nuclear Magnetic Resonance (NMR) [1–4] is a successful method for non-destructive investigation of materials and biological systems [5–7]. The main problem of NMR is the small signal-to-noise ratio (SNR) due to the very low polarization degree of the nuclear spins in magnetic fields (¹H-polarization degree $P = 3 \times 10^{-6}$ at $B_0 = 1$ T). This complicates the measurement of NMR spectra by using mobile spectrometers that operate at low magnetic fields. Especially, the SNR is very small for rare nuclei such as ¹³C, ²⁹Si, ¹²⁹Xe and ⁶Li, which are essential for many applications in materials science and medicine [8]. ⁶Li plays a crucial role in brain chemistry and cases of clinical depression have been reported related to malnutrition and lithium deficiency.

Hyperpolarization technology such as SEOP [9,10], DNP [8,11–13], SPINOE [14,15], and PHIP [16–18] provide a suitable method to increase the SNR. The development and advancement of this technology has opened up many new applications that enriched the field of medical technology, biology, chemistry and physics [8,19,20]. Consequently, optimizing and extending this technology has moved more and more into the focus of scientific interest in recent years.

Corresponding author.
E-mail address: ali.gordji@post.rwth-aachen.de (A. Gordji-Nejad).

Among the rare nuclei the ⁶Li nucleus is a promising sensor to study transport phenomena in biological systems (e.g. the brain) and membranes (e.g., Li-ion battery). For example, it has recently been shown that hyperpolarized ⁶Li can be used as a contrast agent for imaging in rat brains [8]. Since in low magnetic fields susceptibility artifacts become smaller, low field NMR should be advantageous to study dynamics in Li ion batteries, especially if they contain metal parts. Furthermore, at lower magnetic fields achieving the high field homogeneities over large samples is less problematic and imaging artifacts that arise when using frequency endoded images are removed due to vanishing chemical shift differences. The difference in relaxation times of free lithium and chemically bound lithium within a medium will offer extremely high contrasts in both T_1 and T_2 weighted images, further empowering low field approach.

For nuclei with spin quantum number I > 1/2, additional relaxation pathways such as quadrupolar interaction leads to polarization loss. In the case of ⁶Li ($I_{6Li} = 1$), due to the low quadrupole moment of $Q(^{6}Li) = -8 \times 10^{-28}$ cm² and small gyromagnetic ratio $\gamma^{6}Li = 6.266$ MHz/T it possesses a long relaxation time T_1 , which is very important for NMR and MRI measurements. Hence long longitudinal relaxation times of diluted ⁶Li in D₂O up to 179 s have been reported [8].

However due to the small gyromagnetic ratio and the low natural abundance (7.42%), ⁶Li-NMR at low magnetic fields is extremely difficult. A theoretical study shows that it is possible to

^{1090-7807/\$ -} see front matter \odot 2011 Elsevier Inc. All rights reserved. doi:10.1016/j.jmr.2011.09.040

measure ⁶Li ions in the mT range, provided they are hyperpolarized prior to the measurement [22]. Here, we will demonstrate that NMR measurements of ⁶Li in the kHz range are possible by thermal pre-polarization of enriched ⁶Li ions in a 2 T Halbach-magnet.

This article deals with the study of ⁶Li ions in various fluids using nuclear magnetic resonance in the mT range. The purpose of this investigation was to study the relaxation effects such as dipole–dipole and quadrupolar interaction in the low field regime. Moreover since in the kHz regime the dipole–dipole rate is not depending on the Larmor frequency, the dipole rate equation simplifies and depends mainly on the correlation time τ_c .

Regarding to the environment, the relaxation time depends to the magnetic or nonmagnetic nuclei that surrounds the ⁶Li. In the case of solvated ⁶Li salts in H₂O and D₂O the ⁶Li is surrounded by magnetic nuclei such as protons and deuterons. According to the relaxation theory the spin–lattice relaxation rate $1/T_1$ is:

$$\frac{1}{T_1} = \gamma_{Li}^2 (\overline{B_x^2} + \overline{B_y^2}) \frac{\tau_0}{1 + \omega_0^2 \tau_0^2} \tag{1}$$

 $\gamma_{\rm Li}$ is the gyromagnetic ratio of ⁶Li, B_x and B_y are the field fluctuation of the components of the *B* field, τ_0 is the correlation time and ω_0 the Larmor frequency. In high field and solid state ω_0 and τ_0 is high compared to liquid state in low field, hence very long relaxation time may occur in solid state.

Since the short correlation limit is valid in liquids states, the relaxation rate depends mainly to the dipole–dipole and quadrupole correlation time τ_c and τ_q . The short correlation time in the liquid state reduces the effects of the dipole–dipole and the quadrupolar interaction to mathematically simpler expressions and leads to an extension of the relaxation time [23].

To determine in which salt solutions the ⁶Li has the longest relaxation time, the ⁶Li-ions of different aqueous (H₂O and D₂O) salt solutions (⁶LiI, ⁶LiNO₃, ⁶LiCl, ⁶LiOH, ⁶LiOD) were first prepolarized in a 2 T Halbach-magnet and the ⁶Li-NMR signal was measured in low-field at B_0 = 3.5 mT. The ⁶LiCl compound was chosen because of its low toxicity and its use as a contrast agent has been reported [8]. To study the anion influence other highly soluble (⁶LiI, ⁶LiNO₃) salts have been used. As the ⁶LiOH is the reaction product of ⁶Li with water it is relevant to study the behavior of aqueous hydroxide solutions, as biological processes occur in those environments. It turns out that ⁶LiI salt in diluted deuterated water has the longest relaxation time ($T_1 \sim 177$ s) of all samples.

Subsequently, the T_1 relaxation times of various ⁶Li salt solutions at different concentrations are compared and the relaxation properties are studied. According to the expectation, the dilution of the ⁶Li samples leads to an extension of the ⁶Li T_1 relaxation time. Only dissolved ⁶Lil in water shows an anomalous behavior. The ⁶Li relaxation time T_1 gets shorter with decreasing concentration. This is related to the conversion reaction of ⁶Lil in water to sparingly soluble ⁶LiOH.

2. Experimental section

2.1. Sample preparation

First, the ⁶Li (99%) NMR signal of a saturated solution ⁶LiCl in D_2O is measured. D_2O was selected because the ⁶Li T_1 time in D_2O is longer compared to H_2O due to the reduced dipole–dipole and quadrupolar interaction. Thus, the loss of the polarization of ⁶Li during the transport to the NMR device can be reduced.

To prepare the saturated solution samples, $m_{\text{LiCI}} = 0.416$ g of ⁶LiCl ($c_{\text{LiCI}} = 20.05 \text{ mol/L}$) salt was dissolved in D₂O and H₂O (0.5 mL). This corresponds to a ⁶Li spin density of [⁶LiCl] = 6.03×10^{21} cm⁻³. To study the T_1 behavior upon dilution, two additional ⁶LiCl samples were prepared with ⁶LiCl ($c_{\text{LiCI}} = 16.96 \text{ mol/L}$) and ⁶LiCl ($c_{\text{LiCI}} = 9.75 \text{ mol/L}$).

⁶LiNO₃ (c_{LiNO3} = 7.67 mol/L, [⁶LiNO₃] = 2.3 × 10²¹ cm⁻³) and ⁶Lil (c_{LiI} = 11.3 mol/L, [⁶LiI] = 3.4 × 10²¹ cm⁻³) were dissolved in the same procedure in 0.5 mL D₂O and H₂O to obtain saturated solutions and two dilutions of both samples (⁶LiNO₃ (c_{LiNO3} = 6.35 - mol/L),(c_{LiNO3} = 5.00 mol/L) and ⁶Lil (c_{LiI} = 7.67 mol/L), (c_{LiI} = 5.50 - mol/L) were prepared.

2.2. NMR spectroscopy

The sample is first pre-polarized in a 2 T Halbach-magnet. After the premagnetization, the sample is transported by hand into the measuring resonator which is situated in the center of the B_0 coil (transport time ~ 1 s). The B_0 coil consists of a 2-piece solenoid with 3 ppm B_0 homogeneity. The current (I = 5.357 A) that is required for the B_0 filed is delivered from a high-precision power supply (0–10 A). The current stability is a few ppm over several minutes. The NMR signal is measured at $B_0 = 3.5$ mT ($v_{Li} =$ 20.66 kHz) after a ($\pi/2$) excitation pulse (Fig. 1) [21].

3. Results and discussion

The ⁶Li signal-to-noise ratio (SNR) of ⁶LiCl in D₂O is SNR = 3.6 (Fig. 2). A comparison with a theoretically calculated value (SNR = 8.6) shows a ~2.3-fold lower SNR. The measured signal has a line width of $\Delta v = 0.3$ Hz, the frequency offset is $\Delta v_{off} = 56$ Hz. Even for ⁶LiNO₃ (SNR = 2.1) and ⁶LiI (SNR = 1.7), both ⁶Li signals are clearly visible. However, they are lower than the ⁶LiCl signal. The SNR for ⁶LiNO₃ is slightly higher than expected. This is because the preamplifier of the setup has a RMS noise between 100 and 140 mV, which leads to slight inconsistencies in calculated SNR upon comparison with the spin density especially for weak signals.

To prove whether a 6 Li in H₂O can be measured or not, analogous saturated solutions of 6 Lil, 6 LiNO₃ and 6 LiCl in H₂O are investigated. It turned out that the relaxation time of the highly

Fig. 1. Schematic presentation of the experiment: The NMR setup with power supply and NMR electronics as well as sample pre-polarization and transport is depicted [21].

Fig. 2. The ⁶Li spectrum of a saturated ⁶LiCl solution in D₂O at B_0 = 3.5 mT (20.66 kHz). The *S*/*N* equals 3.6. Left: Fourier-transformed frequency spectrum with a line width of Δv = 0.3 Hz.

Fig. 3. *T*₁-relaxation time of ⁶LiCl (*T*₁ = 10.5 s), ⁶LiNO₃ (*T*₁ = 23.4 s) and ⁶Lil (*T*₁ = 67.3 s) in D₂O (left). *T*₁-relaxation time of ⁶LiNO₃ (*T*₁ = 12 s) and ⁶Lil (*T*₁ = 67.7 s) in H₂O (right).

concentrated ⁶LiCl solution is shorter than the transportation time from the Halbach-magnet to the NMR device (\sim 1 s), which leads to a signal loss. Otherwise it is possible to measure the ⁶Li signal from ⁶LiNO₃ (SNR \sim 2) and ⁶LiI (SNR = 1.4) in H₂O.

After it has been shown that thermally pre-polarized ⁶Li can be measured even at low magnetic fields ($B_0 = 3.5$ mT), the question arises which of the ⁶Li-salt samples has the longest T_1 relaxation time, since this is essential for the purpose to store the hyperpolarized ⁶Li and transport it to the NMR device. The T_1 relaxation times are determined by the saturation recovery method, while in this case the evolution time τ is replaced by a polarization time in the Halbach-magnet. This procedure is repeated with increasing time intervals until the saturated magnetization is reached.

In the following, results of T_1 measurements for different saturated ⁶Li salt solutions in D₂O and H₂O will be discussed. We obtained the following relaxation times ⁶LiCl: $T_1 = 10.5$ s; ⁶LiNO₃: $T_1 = 23.4$ s and ⁶LiI: $T_1 = 67.3$ s in D₂O (Fig. 3 left) and LiNO₃: $T_1 = 12$ s and for ⁶LiI: $T_1 = 67.7$ s (Fig. 3 right) in H₂O. Therefore, ⁶LiI is the best option of the investigated compounds for storing the hyperpolarized ⁶Li. As expected the relaxation times are shorter in proton containing (except for ⁶LiI) solutions due to the increased dipolar coupling interaction. Due to the weak signal and decreasing signal intensity with decreasing concentration, only NMR measurements of three different concentrations were performed. Regarding the concentration dependence of the T_1 relaxation times of the ⁶Li-salt samples we found the following:

As a reference, T_1 of the reaction products of ⁶Li with water (⁶LiOD in D₂O and ⁶LiOH in H₂O) were measured (solubility ⁶LiO-D/⁶LiOH = 2.9 mol/L [25]). These measurements are used to determine the influence of anions (NO₃⁻, I⁻, Cl⁻) on T_1 of the ⁶Li ions. Due to the low solubility (spin density) T_1 of just one dilution was measured. In Table 1, the measured T_1 times of all samples are given for different concentrations. The data shows that T_1 of ⁶Li salts in all H₂O salt solutions (except ⁶LiI) are shorter than in D₂O. This behavior can be explained as follows.

In the case of the ⁶Li in liquids two spin–lattice relaxation rates are responsible for the main part of the relaxation rate [23]:

A. Gordji-Nejad et al./Journal of Magnetic Resonance 214 (2012) 10-14

Longitudinal relaxation	times of different concentrations and spin of	densities of ⁶ LiCl, ⁶ LiNO ₃ , ⁶ LiOD, ⁶ LiOH and ⁶ LiI ir	H_2O and D_2O at $B_0 = 3.5$ mT.
⁶ Li-sample	Concentration (mol/L)	Spin density [⁶ Li] in (cm ⁻³)	T_1 in D ₂ O (s)

⁶ Li-sample	Concentration (mol/L)	Spin density [⁶ Li] in (cm ⁻³)	T_1 in D ₂ O (s)	T_1 in H ₂ O (s)
⁶ LiCl	$\begin{array}{c} C_{GLi} = 20.05 \\ C_{GLi} = 16.96 \\ C_{GLi} = 9.75 \end{array}$	$\begin{array}{l} 6.02\times 10^{21} \\ 5.1\times 10^{21} \\ 2.9\times 10^{21} \end{array}$	11.7 17.3 37.6	~1
⁶ LiNO ₃	$C_{6Li} = 7.67$ $C_{6Li} = 6.35$ $C_{6Li} = 5.00$	$\begin{array}{l} 2.3 \times 10^{21} \\ 1.9 \times 10^{21} \\ 1.5 \times 10^{21} \end{array}$	23.2 34.1 43.4	12.8 23.7 41.1
⁶ LiI	$\begin{array}{c} C_{6Li} = 11.13 \\ C_{6Li} = 7.67 \\ C_{6Li} = 5.50 \end{array}$	$\begin{array}{l} 3.3 \times 10^{21} \\ 2.3 \times 10^{21} \\ 1.6 \times 10^{21} \end{array}$	67.3 77.0 177.7	67.7 49.6 28.4
⁶ LiOD	C _{6Li} = 3.09 C _{6Li} = 1.85	$\begin{array}{l} 9.3 \times 10^{20} \\ 5.5 \times 10^{20} \end{array}$	43.0 55.8	
⁶ LiOH	C _{6Li} = 3.09 C _{6Li} = 1.85	$\begin{array}{l} 9.3 \times 10^{20} \\ 5.5 \times 10^{20} \end{array}$		29.0 58.1

1. The dipole-dipole interaction:

Table 1

$$\left(\frac{1}{T_1}\right)_{^{6}\text{Li}}^{\text{D},\text{H}} \sim \rho_{^{6}\text{Li}}^{0} = \frac{8}{3} \cdot \frac{\gamma_{\text{D}(\text{H})}^2 \cdot \gamma_{^{6}\text{Li}}^2 \cdot \hbar^2 \cdot \tau_c}{r_{\text{D}(\text{H})^{^{6}\text{Li}}}^6}$$
(2)

Since the measurement takes place in the low frequency range (ω = 2 π ·20 kHz), the "short correlation limit" ($\omega \tau_c \ll 1$) is always valid.

Here the gyromagnetic ratio of deuterium (protons) and ⁶Li are $\gamma_{D(H)}$ and γ_{6Li} . $\omega_{D,H}$ and ω_{6Li} ; are the angular frequencies of deuterium (protons) and ⁶Li. $r_{D(H)6Li}$ is the average distance between both interaction partners and τ_c the correlation time. The gyromagnetic ratio of ¹H ($\gamma_{\rm H}$ = 42.75 MHz/G) is much larger than D $(v_{\rm D} = 6.53 \text{ MHz/T})$. Thus, T_1 of ⁶Li in H₂O is shorter than in D₂O.

2. For nuclei with l > 1/2 the quadrupole interaction gives rise to an additional relaxation pathway with the spin-lattice relaxation rate $(1/T_1)_0$. The interaction of the nuclei with quadrupole moment Q with fluctuating electric field gradients in its environment [24] is of the form:

$$\left(\frac{1}{T_1}\right)_Q \approx \frac{3}{4} \cdot \frac{2I_{6\text{Li}} + 3}{I_{6\text{Li}}^2 (2I_{6\text{Li}} - 1)} \cdot \left(\frac{eQ}{h}\right)^2 \cdot \frac{\partial^2 V}{\partial^2 z} \cdot \tau_q \tag{3}$$

 $\frac{\partial^2 V}{\partial z_a}$ is the electric field gradient at the location of the core, τ_a the correlation time of the guadrupolar interaction and I the spin guantum number of the ⁶Li nucleus (I_{6Li} = 1). A further observation is that the ⁶Li longitudinal relaxation time in both solutions (D_2O and in H_2O) becomes longer upon dilution (except for ⁶Lil in H₂O) (Fig. 4). This is a result of the fact that for both dipole-dipole interaction and the

Fig. 4. T₁-relaxation time of all ⁶Li-samples as a function of concentration of the ⁶Lisalts in D₂O and H₂O. With decreasing concentration of the ⁶Li-salts T₁ increases.

quadrupolar interaction the correlation time (τ_c , τ_q) between ⁶Liions and the protons, deuterons and anions becomes shorter. Another reason for the T_1 extension is, that at low ⁶Li concentrations each ⁶Li-Ion is surrounded by six-H₂O (or D₂O) molecules, which are strongly bound to the ⁶Li-ion and thus forming a stable hydrate. Therefore, the ${}^{35}Cl^-$, ${}^{127}I^-$, ${}^{14}NO_3^-$ anions cannot approach the ${}^{6}Li$ -ion as close as the protons or deuterons. At high concentrations (e.g. LiCl in H₂O, $[{}^{6}Li^{+}] = 6.02 \times 10^{21} \text{ cm}^{-3}$ and $[H_{2}O] = 1.6 \times 10^{22} \text{ cm}^{-3}$) there are not enough water molecules present to form the hexahydrate-complex, so that on average every ⁶Li has at least 3.2 anion contacts. Under these conditions, the ⁶Li-ions are strongly associated with the anions, which leads to long correlation times and a very short T_1 (~1 s) as a result of intense dipolar, quadrupolar and spin-rotation interaction.

As mentioned before, it is remarkable that T_1 for ⁶Lil in H₂O exhibits a totally different behavior compared to the other solutions. T_1 becomes shorter with decreasing concentration: $T_{1(11.3 \text{ mol})}$ = $67.7 \text{ s} > T_{1(7.67 \text{mol})} = 49.6 \text{ s} > T_{1(5.5 \text{mol})} = 28.4 \text{ s}$ (see Table 1). T_1 of the ⁶Lil samples in H₂O approach the relaxation time of the ⁶LiOH-reference upon dilution of the samples (see Fig. 5) until a threshold is reached and T_1 increases upon further dilution of the sample.

A possible explanation for this phenomenon is as follows: the dissolution process of ⁶LiI in H₂O is associated with an exothermic reaction leading to sample heating:

(1) ${}^{6}Lil + H_2O \xrightarrow{ex.} {}^{6}Li^+(aq) + I^-(aq)$

- (1) $LII + H_2O \xrightarrow{\text{ox.}} (H_1) + I (H_2)$ (2) $2I^- + 2H_2O \xrightarrow{\text{ox.}} 2I_2 + 2OH^- + H_2 \uparrow$ (3) $OH^- + {}^6Li^+ \rightarrow {}^6LiOH \downarrow$ (percipitates)

Fig. 5. Magnetization time of ⁶Lil in H_2O : the relaxation time T_1 of ⁶Li is plotted as a function of concentration of ⁶LiI solution sample with precipitation (rectangle) and a filtered sample without precipitation (circle).

In this process ⁶LiOH is formed and due to its lower solubility compared to the iodide compound it settles as a precipitate at the bottom of the sample. Upon dilution the ⁶LiOH sediment dissolves and leads to above mentioned tendency. Until the threshold is reached the concentration of the ⁶LiOH solution is constant due to dilution of the precipitate and eventually, the ⁶LiOH is completely dissolved. From the threshold (c_{Lil} = 5.5 mol/L), any further dilution of the sample leads to a decreasing ⁶Li ion concentration and prolonged T_1 . This was proven by removing the precipitate and diluting the sample showing the expected T_1 prolongation when reducing the concentration (Fig. 5).

After the precipitate has been completely dissolved further dilution of the sample ($c_{\text{Lil}} = 2.84 \text{ mol/L}$ and $c_{\text{Lil}} = 1.77 \text{ mol/L}$) leads to a longer longitudinal relaxation time of ⁶Li. This corresponds to the behavior of all investigated ⁶Li Samples. These results show that indeed the ⁶LiOH precipitate in the dilution leads to a shortening of the ⁶Li relaxation time. It is remarkable that this behavior could not be observed in case of ⁶LiI in D₂O, where regular concentration dependency was observed. We assume that this is a result of reduced dipole–dipole interaction due to the smaller gyromagnetic ratio of ²D that leads to a lower relaxation ratio and hence plays a less significant role.

4. Conclusion

Our investigations of different lithium ion solutions in low magnetic fields ($B_0 = 3.5 \text{ mT}$), show that the pre-polarized ⁶Li ($B_p = 2 \text{ T}$) of the ⁶Lil salt solution in deuterated water (D₂O) has the longest T_1 (177 s). According to the presented results, hyperpolarized ⁶Lil salt solution provides an opportunity to maintain the polarization for a few minutes and measure the ⁶Li signal in low magnetic fields. By diluting the solution the relaxation time T_1 of all ⁶Li salts increases with decreasing concentration In the case of ⁶Lil in H₂O an inverse behavior was observed which occur due to formation of ⁶LiOH upon the solution of ⁶Li alts in low-fields provide an important empirical data for future ⁶Li salts in low-fields provide an important in clinical MRI because of the long relaxation times or to study transportation and reaction phenomena in lithium ion batteries.

References

- A. Abragam, The Principles of Nuclear Magnetism, Clarendon Press, Oxford, 1961.
- [2] R.R. Ernst, G. Bodenhausen, A. Wokaun, Principles of Nuclear Magnetic Resonance in One and Two Dimensions, Clarendon Press, Oxford, 1987.

- [3] B. Blümich, Essential NMR, Springer Verlag, Berlin Heidelberg, 2005.
- [4] F. Bloch, W.W. Hansen, M. Packard, Nuclear induction, Phys. Rev. 69 (1946) 127.
- [5] T. Pietraß, H.C. Gaede, A. Bifone, A. pines, J.A. Ripmeester, Monitoring xenon clathrate hydrate formation on ice surfaces with optically enhanced ¹²⁹Xe NMR, J. Am. Chem. Soc. 117 (1995) 7520–7525.
- [6] H.W. Long, H.C. Gaede, J. Shore, L. Reven, C.R. Bowers, J. Kritzenberger, T. Pietrass, A. Pines, High-field cross polarization NMR From laser-polarized xenon to a polymer surface, J. Am. Chem. Soc. 115 (1993) 8491–8492.
- [7] H.C. Gaede, Y.-Q. Song, R.E. Taylor, E. J Munson, J.A. Reimer, A. Pines, High-field cross polarization NMR from laser-polarized xenon to surface nuclei, Appl. Magn. Reson. 8 (1995) 373.
- [8] R.B. van Heeswijk, K. Uffmann, A. Comment, F. Kurdzesau, C. Perazzolo, C. Cudalbu, S. Jannin, J.A. Konter, Patrick, Hautle, B. van den Brandt, G. Navon, J. van der Klink, R. Gruetter, Hyperpolarized lithium-6 as a sensor of nanomolar contrast agent, Magn. Reson. Med. 61 (2009) 1489–1493.
- [9] W. Happer, Optical pumping, Rev. Mod. Phys. 44 (1972) 169-249.
- [10] S. Appelt, A.B. Baranga, C.J. Erickson, M.V. Romalis, A.R. Young, W. Happer, Theory of spin-exchange optical pumping of ³He and ¹²⁹Xe, Phys. Rev. A 58 (1998) 1412–1439.
- [11] A. Abragam, M. Goldman, Principles of dynamic nuclear polarisation, Rep. Prog. Phys. 41 (1978) 395–467.
- [12] M.E. Halse, P.T. Callaghan, A dynamic nuclear polarization strategy for multidimensional Earth's field NMR, J. Magn. Reson. 195 (2008) 162–168.
- [13] M.D. Lingwood, I.A. Ivanov, A.R. Cote, S.J. Han, Heisenberg spin exchange effects of nitroxide radicals on Overhauser dynamic nuclear polarization in the low field limit at 1.5 mT, J. Magn. Reson. 204 (2010) 56–63.
- [14] G. Navon, Y.Q. Song, T. Room, S. Appelt, R.E. Taylor, A. Pines, Enhancement of solution NMR and MRI with laser-polarized Xenon, Science 271 (1996) 1848– 1851.
- [15] S. Appelt, F.W. Häsing, S. Bear-Lang, N.J. Shah, B. Blümich, Proton magnetization enhancement of solvents with hyperpolarized xenon in very low-magnetic fields, Chem. Phys. Lett. 348 (2001) 263.
- [16] R.W. Adams, J.A. Aguilar, K.D. Atkinson, M.J. Cowley, I. Paul, P. Elliott, S.B. Duckett, G.G.R. Green, I.G. Khazal, J. López-Serrano, D.C. Williamson, Reversible interaction with para-hydrogen enhance NMR sensitivity by polarization transfer, Science 323 (2009) 1708–1711.
- [17] S.B. Duckett, N.J. Wood, Parahydrogen-based NMR methods as a mechanistic probe in inorganic chemistry, Coord. Chem. Rev. 252 (2008) 278–291.
- [18] C. Russell Bowers, D.P. Weitekamp, Transformation of symmetrization order to nuclear-spin magnetization by chemical reaction and nuclear magnetic resonance, Phys. Rev. Lett. 57 (1986) 11270–11275.
- [19] K. Golman, R. Zandt, M. Thaning, Real-time metabolic imaging, Proc. Natl. Acad. Sci. USA 103 (2006) 11270–11275.
- [20] P. Bhattacharya, K. Harris, A.P. Lin, M. Manson, V.A. Norton, W.H. Perman, D.P. Weitekamp, B.D. Ross, Ultra-fast three dimensional Imaging of hyperpolarized ¹³C in vivo, MAGMA 18 (2005) 245–256.
- [21] S. Appelt, S. Glöggler, F.W. Häsing, U. Sieling, A. Gordji-Nejad, B. Blümich, NMR spectroscopy in the milli-Tesla regime: measurement of ¹H chemical-shift difference below the line width, Chem. Phys. Lett. 485 (2010) 217–220.
- [22] A.G. Webb, Radiofrequency microcoils in magnetic resonance, Prog. Nucl. Magn. Reson. Spectrosc. 31 (1997) 1–42.
- [23] F.W. Wehrli, Spin-lattice relaxation of some less common weakly quadrupolar nuclei, J. Magn. Reson. 30 (1978) 193–209.
- [24] H.G. Hertz, R. Tusch, N.S. Bowman, Intermolecular and intramolecular motions in the solvation spheres of some ions in methyl and ethyl alcohol, J. Phys. Chem. 80 (1976).
- [25] D.R. Lide, CRC Handbook of Chemistry and Physics, 87th ed., CRC Press, Boca Raton, FL, 2006.